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ABSTRACT 

 

The feeling that our body belongs to us, and that it is an essential part of ourselves, is a 

fundamental aspect of human self-awareness and individual psychological identity. The 

intimate relation between the sense of body ownership and the sense of self emphasizes the 

importance of understanding the former in order to access and comprehend the latter. However, 

it also outlines the challenge of objectifying the body by turning it into a subject of controlled 

experimental research. 

The aim of this thesis was to create an experimental tool with which to overcome this 

immanent hindrance and study for the first time the mechanisms underlying the feeling of an 

entire body as belonging to oneself. Three studies, designed to address the perceptual and 

neural underpinnings of full-body ownership, are presented.  

In Study I we created a perceptual illusion in which healthy participants experience a whole 

artificial or real body as their own. This illusory sensation is elicited when participants perceive 

convergent multisensory input from their own body (which is out of view) and the new body 

(which they view from a first person perspective). Importantly, the feeling of ownership was 

not confined to the specific location of sensory stimulation, but instead encompassed the entire 

body. The illusory perception was abolished or significantly diminished when the input from 

the different sensory modalities was temporally desynchronized, or when the new body was 

replaced by a non-corporeal object of similar size. In sum, this first study showcases a novel 

experimental set-up that enables the scientific study of the perceptual mechanisms underlying 

full-body ownership, and provided evidence that in the core of this perceptual phenomenon lies 

the integration of convergent multisensory input from the body.  

In Study II we specifically investigated the role played by the visual perspective in the 

generation of a full-body ownership illusion. To that end, we compared the strength of the 

illusion when the new body was perceived either from a first person or from a third person 

perspective. The results indicated that attributing a new body to oneself is possible only when 

one perceives this body, and the multisensory signals deriving from it, from an egocentric (i.e. 

first person) perspective. 

In Study III we created an experimental set-up to induce the full-body illusion in a 

functional magnetic resonance imaging (fMRI) setting, which enabled us to shed light on the 

neural mechanisms underlying full-body ownership. In three independent fMRI experiments we 

specifically investigated (i) which neural activation is associated with the experience of full-

body ownership, (ii) whether the multisensory processes giving rise to the full-body illusion 

operate in body-centered reference frames, and (iii) how ownership of individual body parts 

translates into the unitary experience of owning a whole body? We found that perceiving a 

body as one’s own is associated with increased activity in the ventral portion of the bilateral 

premotor areas, the anterior part of the left intraparietal sulcus and the left putamen. In addition, 

the activation in the ventral premotor cortex was found to reflect the construction of ownership 

of a whole body from its parts. In fact, it was stronger when the stimulated body part was 

attached to the body, present irrespective of the location of the stimulation evoking the illusion, 

and moreover displayed multivoxel patterns carrying information about full-body ownership. 

All together these findings suggest that the unitary experience of owning an entire body is 

produced by neuronal populations that integrate multisensory information across body 

segments in body-centered reference frames. 
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1 INTRODUCTION 

 

“The aspects of things that are most important for us are 

hidden because of their simplicity and familiarity. (One is unable 

to notice something because it is always before one’s eyes.)The 

real foundations of this enquiry do not strike a man at all.” 

               Ludwig Wittgenstein, Philosophical Investigations  

 

 

Since ancient times, philosophers have cogitated about the very essence of our 

being, with the aim to unravel the complex relationship between the mind and the body. 

Ever since then, through continuous development of philosophical theories as well as 

perpetual progress in medicine and science, the concept and nature of our bodily 

existence has been repeatedly redefined and reconceived. Historically, the body has 

mostly been conceptualized and analyzed with respect to the mind, and conceived in 

numerous differential ways such as: A substance from which the mind is derived 

(Aristotle, Hobbs, Hegel) or which is derived from the mind (Berkeley, Leibniz, 

Schopenhauer); An “extended” substance which together with the mind represents God 

(Spinoza) or which interacts with the mind in the pineal gland (Descartes); A non-

conceptual form of knowledge (Kant), different from any other type of knowledge, but 

a necessary prerequisite for other types of knowledge (Merleau-Ponty 2005); The 

“storm-center” of experience (James 1890); and The point of origin of psychological 

identity (Cassam 1997; Edelman 2004). Only more recently, the focus of philosophical 

and scientific interest shifted from the mind-body interplay and the body’s constituents, 

to the actual mechanism underlying the intimate experience of our corporeal self 

(Bermudez et al 1998; Gallagher 2005).  

This thesis is a modest attempt to contribute to our current understanding of the 

processes that lead to the experience of perceiving a body as belonging to oneself. It is 

a quest for answers to some apparently simple, yet unresolved questions such as: What 

are the perceptual and neural mechanisms that allow us to experience our bodies as part 

of ourselves? How come we experience the body as a unified whole rather than a set of 

fragmented parts? Does the mind have the capacity to attribute an entire new body to 

the self? 

Before we tackle these problems however, we need to address the following three 

fundamental questions, which will set the scene for the studies outlined in this thesis 

and the hypotheses behind them: What is body ownership? Why study body 

ownership? How can body ownership be studied? 

 

 

1.1 WHAT IS BODY OWNERSHIP AND WHY STUDY IT? 

 

In science, especially within the cognitive domain, it is imperative to precisely 

define the concepts under investigation, in order to avoid any erroneous interpretations 

or misleading conclusions. The concept of body ownership is very complex by nature, 

and its definition depends on the scientific or philosophical angle of observation and 

approach. For example, in philosophy the term body ownership is most often primarily 
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related to the intimate nature of bodily sensations (i.e. pain, touch), and their relation to 

human consciousness (i.e. the concept of qualia). In clinical psychology and psychiatry, 

the focus is frequently on personality and pathological disturbances thereof, which can 

result in dysfunctional perception of the own body (e.g. body integrity identity disorder, 

body dysmorphic disorder, eating disorders, depersonalization disorder, schizophrenia, 

out-of body experiences etc.). In the medical sciences, the term body ownership is often 

referred to in relation to ethical aspects of organ donation, whereas in experimental 

psychology, this concept has been addressed in the context of experimental 

investigations of visual self recognition, proprioception, and recently, in the context of 

multisensory body representation (see below).  

In the current thesis, the term body ownership is used to describe the sensation of 

experiencing a body as belonging to oneself. In fact, the studies presented below were 

specifically designed to address the perceptual and neural mechanisms underlying this 

fundamental process of attributing a body to the self.  

Shedding light on the mechanisms that drive our experience of a corporeal self 

represents a crucial step towards a deeper understanding of our intimate experience of a 

self in more general terms. That is, understanding the perceptual and neural 

mechanisms that enable us to attribute our body to our self could help us reveal the 

mechanisms that give rise to the qualia of the embodied self. In addition, apart from 

being a way to scientifically address a long standing philosophical question, the 

understanding of the neural underpinnings of body ownership is also highly relevant for 

extending our knowledge of the fundamental working mechanisms of the human brain.   

Moreover, as will be described in much detail in this thesis, in the course of 

addressing these questions we developed a novel experimental setup that allows one to 

induce people to perceive a whole new body as their own. This experimental setup 

lends itself for a wealth of future potential applications in scientific, clinical as well as 

industrial settings. 

 

1.2 HOW CAN BODY OWNERSHIP BE STUDIED? 

 

A utopian experiment aimed at investigating the principles of body ownership, 

would be designed in a way that allows the comparison between the experience of 

owning a body to the experience of not owning one. However, the concept of a brain in 

a “life-support vat” is only possible in the realm of science fiction or philosophy 

(Dennett 1978). 

 “That same old body always there”, as famously stated by William James in his 

Principles of Psychology (1890), pinpoints the difficulty in objectively studying the 

mechanisms that allow us to experience a body as our own. The body is always there, 

as is the intimate sensation of belonging to it, and this poses fundamental challenges to 

any attempt of its scientific investigation. 

Faced with these inherent difficulties, most of the early research efforts focused on 

delineating some of the more tangible aspects of the body that could be systematically 

studied. Within this context, one aspect that emerged was a subdivision of different 

aspects of body representation, which is still applied today. Two of these aspects are the 

body image and the body schema (Gallagher 1986). The body image refers to the 

perceptual experience of the body, the general conceptual understanding of it, and the 

emotional attitudes one has towards it. In contrast, the body schema refers to a non-

conscious collection of processes that registers the body’s spatial and motor properties 
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(Gallagher 2005; Gallagher and Cole 1995; Graziano and Botvinick 2002; Haggard and 

Wolpert 2005; Head and Holmes 1911). However, this line of research did not pertain 

to the specific problem of body ownership.   

 

Neurology 

 

The first more direct evidence for the neural underpinnings of the corporeal self 

came from neurological studies of patients with somatoparaphrenia. This condition 

usually manifests in patients with distributed cortical and subcortical lesions, and is 

characterized by delusions concerning the contralesional paralyzed body parts. Such 

delusions typically include feelings of “non-belonging” towards certain body parts, as 

well as the tendency to attribute parts of the own body to someone else (Baier and 

Karnath 2008; Feinberg et al 2010; Gandola et al 2011; Karnath et al 2005). Most data 

on this peculiar body disownership condition has been derived from single case reports, 

which have attributed the symptoms to extended right fronto-temporo-parietal lesions 

(Vallar and Ronchi 2009). However, some single case studies have also reported more 

focal cortical or subcortical lesion locations (e.g., right basal ganglia, thalamus and 

subcortical white matter; (Bisiach et al 1991; Halligan et al 1995; Healton et al 1982). 

Neuroimaging studies on somatoparaphrenia have reported inconsistent findings. 

For example, Feinberg et al (1990) attributed this condition to lesions in the 

supramarginal gyrus (Feinberg et al 1990), the posterior corona radiate (Feinberg et al 

1990) and in a more recent study also right medial and orbito-frontal areas (Feinberg et 

al 2010). In contrast, (Baier and Karnath 2008) associated it with a lesion in the right 

posterior insula. In both studies however, there was lack of control for anosognosia for 

hemiplegia (a condition in which a person who suffers paralysis after a brain stroke 

seems unaware of the existence of his or her disability). In a recent study, (Gandola et 

al 2011) addressed this issue and found that spatial neglect and anosognosia for 

hemiplegia were associated with wide spread lesions in the fronto-temporo-parietal 

network. In contrast, patients with somatoparaphrenia showed an additional extensive 

lesion in white matter and subcortical structures, i.e. the thalamus, basal ganglia and 

amygdala. According to the authors’ hypothesis, lesions to these latter structures might 

prevent most sensory input from being processed in neocortical structures, and in turn 

lead to the reduced sense of familiarity experienced by somatoparaphrenic patients for 

their paralyzed limbs.  

Taken together, these contrasting findings of case studies of somatoparaphrenia 

make it difficult to draw any definite conclusions about the neural basis of body 

ownership. Nevertheless, these studies were the first to suggest a link between different 

brain structures and the feeling of body ownership.  

 

Experimental psychology 

 

A real breakthrough in the experimental investigation of body ownership came with 

the discovery of the rubber hand illusion (RHI) (Botvinick and Cohen 1998), in which 

healthy participants are induced to perceive an artificial hand as belonging to 

themselves. 

The use of illusions to study the processes underlying normal perception is not a 

novel concept in the context of psychology research. In fact, some important insights 

into the basic mechanisms underlying various aspects of physiology, visual 
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perception and cognition, have been gained through illusions such as the Hermann 

grid illusion, the Necker cube, the Rubin vase, Muller-Lyer illusion, the Ponzo 

illusion, Kanizsa triangle, the Esher’s paradox illusions, the Cutaneous rabbit illusion, 

and the Pinocchio illusion, to name only a few.  

The RHI pioneered the systematic investigation of the principles behind the 

attribution of a limb to the self, as it was the first experimental tool to enable the 

systematic manipulation of the experience of limb ownership. That is, while still not 

fulfilling the conditions of the utopian body ownership experiment mentioned 

previously, the RHI enables at least a single artificial limb to be perceived as either 

belonging to oneself or not. For the induction of the illusion, synchronous touches are 

applied to the participants’ real hand which is out of view, and a rubber hand which is 

in full view (Figure 1). If the visuo-tactile stimulation occurs in temporal and spatial 

synchrony, the illusion typically starts within ten to fifteen seconds. Conversely, if the 

rubber hand is rotated with respect to the real hand, replaced by a non-corporeal 

object, or touched out of synchrony with the real hand, the illusion breaks down 

(Armel and Ramachandran 2003; Botvinick and Cohen 1998; Costantini and Haggard 

2007; Durgin et al 2007; Ehrsson et al 2005; Ehrsson et al 2004; Ehrsson et al 2007; 

Holmes et al 2006; Kanayama et al 2007; Lopez et al 2008; Makin et al 2008; Pavani 

et al 2000; Rorden et al 1999; Tsakiris and Haggard 2005; Tsakiris et al 2007a). 

In sum, in behavioral terms, studies on the RHI have demonstrated how temporal 

and spatial patterns of congruent visual and somatosensory signals in hand-centered 

reference frames, play an important role in how we come to experience that a limb is 

part of our own body.  

 

 
 

Neuroscience 

 

Neuroimaging studies implementing the RHI, have demonstrated that the 

embodiment of the rubber hand is associated with increased activity in the ventral 

portion of the bilateral premotor cortices, the anterior section of the left intraparietal 

sulcus (Ehrsson et al 2005; Ehrsson et al 2004) (Figure 2) and the right posterior insula 

(Tsakiris et al 2007a). An important study has shown that the rubber hand is indeed 

fully incorporated in the body as threats towards the rubber hand as well as threats to 

the participant’s own hand lead to similar increase in responses in the insula and the 

anterior cingulate cortex (Ehrsson et al 2007), i.e. brain regions associated with anxiety 

and interoceptive awareness (Critchley et al 2003; Ploghaus et al 1999; Wager et al 

2004).  

 

Figure 1. Experimental set-up used to induce the rubber hand illusion. The 

participant’s right hand is placed behind a precluding wall. A life size 

cosmetic upper limb prosthesis is placed in front of the participant in 

alignment with the participant’s hidden right hand. Two identical brushes 

are used to apply either synchronous (experimental condition) or 

asynchronous (control condition) strokes on identical locations of the two 

hands. The participant is asked to fixate the brush strokes on the rubber 

hand.  



 

  5 

a 

 

 
Figure 2. (a) Bilateral premotor activity that reflects the rubber hand illusion (interaction effect, P <0.005 for 

display purposes). The activation peaks are located in the inferior part of the precentral sulcus. R denotes right; 

coordinates in standard space are indicated at lower left. The plot shows the contrast estimates; error bars denote 

SEs. (b) Intraparietal activity that reflects the effects of both seeing the arm in a congruent position and perceiving 

synchronous brushstrokes (conjunction of the main effects, P < 0.001 in each contrast).  

(Reprinted with permission by the authors). 

 

Insights from electrophysiological studies in non-human primates  

 

The body is a multisensory construct, as is the vast majority of things we perceive or 

act upon in our life. Hence, in order to interact with the environment our nervous 

system needs to be able to integrate the different sensory inputs originating from 

various objects into meaningful percepts. A seminal study conducted on monkeys, 

characterized the properties of a type of neurons located in the ventral premotor cortex 

that responded to visual stimuli near the body, (i.e. that are within reach), and whose 

visual receptive fields (RFs) and tactile RFs were spatially aligned (Rizzolatti et al 

1981) [see also (Sakata et al 1973)]. Subsequent studies have then revealed the 

existence of an entire network of brain areas with similar multisensory neurons that 

respond to visual, tactile and proprioceptive stimulation. This network includes the 

ventral premotor cortex (Cooke and Graziano 2004; Fogassi et al 1996; Graziano 1999; 

Graziano et al 1997), the ventral intraparietal area (Avillac et al 2007; Avillac et al 

2005; Bremmer et al 2001; Colby et al 1993; Duhamel et al 1997; Duhamel et al 1998; 

Graziano et al 2000; Iriki et al 1996; Schlack et al 2005), and the putamen (Graziano 

and Gross 1993). Crucially, the multisensory neurons in these areas have also been 

b 
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found to have visual RFs centered on the monkeys’ head, face, neck, torso, shoulders, 

arms or hands that overlap considerably with their tactile RFs (Avillac et al 2005; 

Fogassi et al 1996; Gentilucci et al 1983; Graziano et al 1997; Ishida et al 2010). 

Furthermore, their visuo-tactile RFs are anchored to a specific limb or body part, so that 

when the limb or body part moves, the visual RFs of the bisensory neurons move along 

with it (Fogassi et al 1996; Graziano 1999; Graziano et al 2000; Graziano and Gross 

1993; Graziano et al 1997). Importantly, the alignment of the visual and tactile RFs 

occurs regardless of the position of the eyes of the monkey (Graziano 1999). In other 

words, these neuronal populations are likely to represent a key factor for coding visual 

information in near personal space within body-part-centered coordinate systems. Of 

particular interest are recent neuroimaging studies in humans that have documented the 

existence of similar multisensory integration occuring in near personal space, and found 

it to be associated with activity in the premotor cortex, the anterior portion of the 

intraparietal sulcus and the putamen (Brozzoli et al 2011; Gentile et al 2011; Makin et 

al 2007). 

 

Beyond mere limb ownership 

 

The RHI has been a highly influential scientific model, both because it initiated an 

avalanche of experimental research aimed at unveiling the perceptual, cognitive and 

neural underpinnings of the attribution of a limb to oneself, and because it gave 

researchers the means to address other fundamental questions that had previously been 

beyond access.  

Some of these questions relate to the perceptual constraints of the overall bodily 

morphology. For example, it has been shown that humans do not have the capacity to 

embody a non-corporeal object that does not sufficiently resemble the general shape of 

a human hand (Tsakiris et al 2010a) (but see (Armel and Ramachandran 2003) for 

contradictory results). However, more recent studies have challenged the idea of a rigid 

body morphology, by demonstrating that healthy individuals can be induced to 

experience simultaneous ownership over three arms (Ehrsson 2009; Guterstam et al 

2011). Further research would be needed to unravel the exact limits of the plasticity of 

the body representation.  

Other questions have bearings on important clinical and industrial applications. For 

example, Ehrsson et al (2008) showed that amputees can also be induced to experience 

the rubber hand illusion, with the artificial hand “replacing” their phantom hand 

(Ehrsson et al 2008). Subsequent lines of research focused on the development of 

robotic hand prosthesis with tactile feedback, which provide amputees with actual 

sensory feedback from the artificial hand (Antfolk et al 2010; Rosén et al 2009). In 

parallel lines of research, studies with healthy individuals have shown that participants 

can perceive ownership of computer-animated hands (Perez-Marcos et al 2009; 

Sanchez-Vives et al ; Slater et al 2008), setting the scene for further development of 

brain-computer interface, tele-presence and tele-robotics.     

A further category of questions pertain to basic physiological principles of human 

higher order perception. For example, systematic manipulation of the extent of 

temporal discrepancies between the visual and tactile input driving the RHI, has 

demonstrated that a time window of less than 300 ms is critical for multisensory 

integration to occur (Shimada et al 2009). In a similar line of research, scientists have 

used the RHI to investigate the weighting of the sensory signals when multisensory 
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input is integrated into a unique percept. Another study used a cross modal effect of 

visual distracters on tactile judgments (Spence et al 2000) showing that the visual input 

during the RHI dominates over proprioception and kinesthesia and leads to 

mislocalization of touch (Pavani et al 2000). The dominance of vision over touch has 

been further demonstrated in experiments employing the RHI which showed that the 

experience of the illusion is possible even when the visual input contradicted the tactile 

input properties (i.e. smoothness) (Schutz-Bosbach et al 2009). 

Of utmost scientific importance is the fact that in more recent studies the principles 

of the RHI were extended beyond the realm of hand ownership as such, and used to 

address more general questions that have bearings on personal identity and the relation 

between the self and the body. For instance, by applying the same type of synchronized 

visuo-tactile stimulation, recent studies have demonstrated that healthy participants can 

be induced to attribute even the face of another individual to themselves (Sforza et al 

2010; Tsakiris 2008). In these experiments, participants observed a photograph of a 

face on a computer screen. Crucially, the photograph could either depicted their own 

face, someone else’s face, or a morphed face in which the degree of ‘self’ and ‘other’ 

was systematically and gradually manipulated from 100% self to 100% other. In the 

experimental condition, in which the participants’ face was touched in synchrony with 

the face they were observing on the computer screen, participants attributed the seen 

face to themselves even in the conditions in which the morphed face was less than 50% 

self.  

Similarly, other researchers have been able to use the basic principle of the RHI to 

experimentally manipulate a further fundamental aspect of human self-awareness, 

namely the spatial co-localization of the self and the body (Ehrsson 2007; 

Lenggenhager et al 2007). In one of these studies, Ehrsson (2007) used video 

technology in conjunction with head mounted displays to virtually “move” the first 

person visual perspective of the participants two meters behind their own bodies. Then, 

by applying synchronized touches to the chest of the participants and the space below 

the cameras (i.e. the virtual chest), the author was able to evoke a vivid perceptual 

illusion during which participants experienced being situated 2 meters behind their own 

bodies, while sensing touch originating from their virtual chest. Hence, these findings 

led to the demonstration that it is possible to experimentally move a person’s centre of 

awareness outside their own body, confirming that multisensory integration is a core 

mechanism for the experience of a corporeal self.      

It was by building on these previous findings, that we were ultimately able to 

develop the experimental set-up of the full-body illusion employed in the studies of this 

thesis, which allowed us to address the following questions: Does the mind have the 

capacity to attribute an entire new body to the self? What are the perceptual, cognitive 

and neural mechanisms that allow us to experience our bodies as part of ourselves? 

How come we experience the body as a unified whole rather than a set of fragmented 

parts? 
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1.3 HYPOTHESES FOR BODY OWNERSHIP  

   

Based on the results of behavioral and neuroimaging studies of the RHI, as well as 

studies on multisensory neurons in primates and humans (see above) we formulated the 

following hypotheses: 

 

a) The principles of the RHI should be extendable to the whole body. That is, 

synchronized visuo-tactile stimulation of an artificial body, which is viewed from a first 

person perspective, and a person’s actual body, which is out of view, should lead to 

illusory ownership of the artificial body.    

 

b) Multisensory integration in body-centered reference frames is a core mechanism of 

body ownership. 

 

c) The attribution of a body to oneself should be associated with activity in key 

multisensory brain regions such as the ventral premotor cortex and the anterior 

intraparietal area.  

  

d) Multisensory integration across body segments should mediate the perceptual 

binding of owned body parts into a unified whole. 
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2 AIMS 

 

Study I was aimed at investigating whether it is possible to induce healthy 

participants to experience illusory ownership of an entire artificial body. Furthermore, it 

aimed to identify the key perceptual processes underlying the attribution of a whole 

body to oneself. 

 

Study II was specifically designed to assess the role of the visual perspective and 

the associated reference frame in the generation of body ownership sensations. In 

addition, in this study we tested whether the induction of the full-body illusion 

developed in Study I would be strictly dependent on the technological setup we used, or 

whether the illusion could also be induced in an experimental setting involving a direct 

view of the artificial body. 

 

The aim of Study III was to shed light on the neural activity associated with the 

full-body ownership illusion. In addition, we investigated the mechanisms that allow 

the perceptual binding of owned body parts into a unified body gestalt.  
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3 METHODS 

 

3.1 PARTICIPANTS 

 

A total of 203 volunteers participated in the three different studies. Table 1 

summarizes the details of the participants, the type of measures as well as the addressed 

questions for each study.  

 

Study N Gender 
Age 

mean ±SD 
Measure Question 

Study I 

Exp. 1 
32 

16 f 

16 m 
25±6 questionnaire 

Can healthy participants attribute 

the body of a mannequin to 

themselves? 

Study I 

Exp.2 
10 

2 f 

8 m 
25±4 SCR 

Can threat evoked SCR be used 

as an objective measure of the 

full-body ownership illusion? 

Study I 

Exp.3 
13 

8 f 

5 m 
27±6.5 SCR 

Is the feeling of ownership 

confided to the specific area of 

visuo-tactile stimulation? 

Study I 

Exp.4 
12 

4f 

8 m 
29±6 SCR 

Can the illusion be induced with 

a non-corporeal object? 

Study I 

Exp.5 
20 

13 f 

7 m 
27±6.5 SCR 

Is it possible to attribute the body 

of another individual to the self? 

Study II 

Exp. 1 
20 20 m 24 ± 5 questionnaire 

Is the first person visual 

perspective essential for the full-

body ownership illusion? 

Study II 

Exp. 2 
13 13 m 27 ± 4 SCR 

Is the importance of the first 

person perspective also reflected 

in the threat-evoked SCR? 

Study II 

Exp. 3 
17 17 m 24 ± 4 SCR 

Does the illusion depend on the 

technological set-up? 

Study III 

Exp. 1 
26 

12 f 

14 m 
26 ± 6 fMRI 

What is the neural activity 

associated with the experience of 

the full-body ownership illusion? 

Study III 

Exp. 2 
20 

7 f 

13 m 
25 ± 5 fMRI 

Is the neural activation associated 

with the illusion dependent on 

the visual perspective? 

Study III 

Exp. 3 
20 

5 f 

15 m 
27 ± 7 fMRI 

What is the mechanism for 

spread of ownership across the 

entire body? 

Table 1. Distribution of participants across the different experiments comprising the three studies; m = 

male, f = female; SCR = skin conductance responses, fMRI = functional magnetic resonance imaging.   
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All participants were naïve to the specific purposes of the study they participated in 

and none of them participated in two or more experiments. The Ethical Review Board 

of Karolinska Institutet approved the experimental protocols and written informed 

consent was obtained from each participant. 

 

 

3.2 PERCEPTUAL ILLUSION OF BODY SWAPPING 

 

3.2.1 Body swapping with a mannequin 

 

In Study I we created an experimental set-up in which healthy participants 

experienced a new body as their own body. In the first set-up, which was used in four 

of the experiments, we demonstrated that it is possible to achieve this illusory effect 

with an artificial body. For that purpose we used a life-sized mannequin (Figure 3).  

To provide the participants with the first person perspective of the new body we 

attached two CCTV cameras (Protos IV, Vista, Wokingham, Berkshire, UK) on a 

custom made helmet mounted on the head of the mannequin. The two CCTV cameras 

were positioned so that each recorded events from the position corresponding to one of 

the mannequin’s eyes. The spacing between the cameras was adjusted for each 

participant to ensure that it matched the distance between their eyes (8–10 cm). The 

input from the cameras was fed without any software conversion, i.e. without 

noticeable delay, to a set of head mounted displays (HMD) (Cybermind Visette Pro 

PAL, Cybermind Interactive, Maastricht, the Netherlands; Display Resolution = 

640x480; true stereoscopic vision, with a wide field-of-view, diagonal field of view= 

71.5°). The HMD were worn by the participants and the images from the left and right 

video cameras were presented on the left and right eye displays, respectively, thus 

providing a true stereoscopic image. Participants were asked to tilt their heads 

downwards as if looking down at their bodies. Hence, they saw the mannequin’s body 

where they expected to see their own. Two identical plastic rods were used to 

repetitively stroke the participants’ abdomen, which was out of view, in synchrony with 

the mannequin’s abdomen, which was in full view of the participant. As a control 

condition, we employed asynchronous touches to the real and artificial abdomens 

(carefully matching the total number and length of the strokes). Each stroke was 

approximately 3 cm long and the number of the strokes was identical for all 

experimental conditions across the experiments. 

Figure 3. 
Experimental set-up to 

induce the full body illusion 

(left panel).  

Image presented to the 

participants head-mounted 

displays (right panel). 
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In Study II we tested the role of the visual perspective in the mechanism of body 

ownership. For that purpose we directly compared two experimental conditions in 

which the participants observed a body of a mannequin from either the first or the 

third person visual perspective (Figure 4). The condition in which the participants 

observed the body of the mannequin from the first person (egocentric) perspective 

was identical to the set-up described above (Figure 4a,b). However, the platform upon 

which the CCTV cameras were mounted was fixed on a rotating axis, which allowed 

the cameras to be pointed either downward to the body of the mannequin (mannequin 

#1, first person perspective, Figure 4a), or forward toward the body of second 

identical mannequin (mannequin #2, third person perspective, Figure 4c) placed 

opposite mannequin #1 at a distance of 75 cm. In the condition, referred to as the 

third person perspective, the participant was asked to position his head as if to look 

forward toward the body of a person standing just opposite him. In the HMDs, the 

participant saw the body of mannequin #2 facing him at a distance of 75 cm (Figure 

4c,d). In both conditions the experimenter used two plastic rods to apply the same 

number of synchronized strokes on the right lateral parts of the mannequin’s 

abdomen and the participant’s abdomen.  

 

 
Figure 4. a,b) Experimental settings used in the second experiment to induce the illusion when participants 

observe the mannequin from the first person perspective. c,d) Set-up used to probe the illusion when participants 

observe the mannequin from the third person visual perspective.    
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3.2.2 Body swapping with another individual 

 

In the fifth experiment in Study I we developed an experimental set-up which 

allowed healthy participants to experience the perceptual illusion that the body of 

another individual is their own body while at the same time they were interacting with 

their real bodies. The experimental set-up to achieve this effect was as follows: 

The two CCTV cameras were attached to a custom made helmet worn by the 

experimenter. The cameras were positioned so that they presented the viewpoint of the 

experimenter. The participants stood in front of the experimenter, facing her, and 

wore the HMD, which were connected to the CCTV cameras on the experimenter’s 

head. They were asked to stretch out their right arm and take hold of the 

experimenter’s right hand, as if to shake it (Figure 5). This set-up allowed the 

participants to see their physical bodies from the shoulders to slightly above the 

knees. Hence, they could clearly recognize themselves and distinguish between their 

own arm and the arm of the experimenter. During the whole experiment a metronome 

was played out loud at 40 beats per minute. The participants and the experimenter 

were asked to repeatedly squeeze each other’s hands for two minutes. In the illusion 

condition, the participant and the experimenter squeezed their hands in a synchronous 

manner, whereas in the control condition they squeezed each other’s hands in an 

alternating rhythm, with the experimenter returning the squeeze in a semi-random 

manner. 

 

 

 

 

3.2.3 Body swapping without using head-mounted displays 

 

In Study II we performed an experiment which aimed to exclude the possibility 

that the full body ownership illusion depends on the video-technology used in the 

previous settings. For this, we devised an experimental set-up in which the body of 

the mannequin could be observed directly, either from the first or from the third 

person perspective.  

Figure 5. Experimental set-up to induce illusory 

body swapping with another individual 
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The set-up used for the first person visual perspective condition was as follows: 

The participants were asked to lie on a bed tilted at 30° from the horizontal plane. The 

front half of the body of a shop mannequin was positioned on top of the participant so 

that the shoulders of the mannequin were resting on the shoulders of the participants 

and the feet of the mannequin were resting on a horizontal support positioned 50 cm 

above the feet of the participants (Figure 6a). Thus, when the participants looked 

down as if they were to look at their own body, they saw the body of a horizontally 

lying down mannequin instead (Figure 6b). The experimenter used two plastic rods to 

apply touches on the right lateral part of the abdomens of the mannequin and the 

participants, either in a synchronous or in an asynchronous mode. For the whole 

duration of the experiment the experimenter was out of sight, hidden behind a curtain, 

to prevent the participants from seeing the experimenter’s hand touching their own 

abdomen. Thus, the only hand the participants saw was the experimenter’s hand 

touching the abdomen of the mannequin. 

The set-up used to test the illusion when the mannequin was viewed from the third 

person perspective was as follows: A second mannequin was placed on an identical 

bed as the one the participants were lying on. This bed was tilted at the same angle 

(approx 30°), but turned in the opposite direction, one meter to the right of the 

participant’s bed. The participants were asked to turn their head to the right and look 

at the body of mannequin #2 on the other bed. A curtain was positioned over the body 

of mannequin #1 resting on top of the participants’ body (see previous paragraph) to 

hide it from the participants (Figure 6c). The curtain was also occluding the 

experimenter, who applied synchronous or asynchronous touches to the right lateral 

part of the abdomens of the participants and the mannequin #2 (Figure 6d). 

Figure 6. a) Experimental set-up to induce the full body ownership without the use of HMD. c) Set-up to probe 

the illusion in the third person perspective. b,d) Depict the points of view of the participants in the respective 

conditions. 
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3.2.4 Body swapping in the MR scanner 

 

In Study III we created an experimental set-up which allowed us to implement the 

full-body illusion in a functional magnetic resonance imaging (fMRI) setting, and 

hence measure the brain activity of participants as they were experiencing the illusion.  

During the scanning sessions, participants were lying comfortably in a supine 

position on the MRI table, with their head tilted at approximately 25 degrees. 3D video 

recordings of the visual stimuli were presented on MR-compatible head-mounted 

displays (HMDs; Nordic Neurolab, Bergen, Norway) positioned in front of the 

participants’ eyes and controlled by Presentation (Version 13.1, Neurobehavioral 

Systems, Inc., www.neurobs.com) (Figure 7a). The 3D videos were recorded in a 

separate session before the fMRI experiments using a red/blue stereoscopic camera 

(novo Minoru, Salford, United Kingdom). Since this required separate red and blue 

filters to produce the stereoscopic effect, a red and a blue filter were glued in front of 

the left and the right display of the HMDs, respectively.  

The experimenter stood on the right side of the participant and applied the touches 

with her index finger using small finger movements only, while standing as still as 

possible to minimize potential movement-induced distortions in the magnetic field 

(Figure 7b). Each touch stimuli corresponded to a small five-centimeter long brisk 

stroke. To achieve the identical number of tactile stimuli in all condition (n= 30 in each 

epoch) the experimenter listened to audio commands delivered via the MRI compatible 

headphones. The presentation of these auditory commands was digitally synchronized 

with the video sequences shown to the participants using Presentation software (see 

above). The same audio files were used when making the video recordings of the 

touches applied to the mannequin’s body, ensuring perfect synchronization between the 

visual and the tactile stimuli applied to the participants’ abdomen during the scans in 

the synchronous conditions. In the asynchronous conditions, the experimenter followed 

the same audio commands, however, the video recordings were delayed by one second, 

introducing asynchrony between the seen and felt touches. During the scans, the 

experimenter was blind to the visual stimulus presented to the participants, eliminating 

any unintentional biases in the way the touches were applied in the different conditions. 

The participants were instructed to look at the location on the body being stimulated 

and to relax. 

Figure 7. Experimental setup to induce the full body ownership illusion in the scanner. a) Arrangement of the scanner 

coil and MR-compatible HMDs b) During the entire duration of the experiment the experimenter stood near the MR 

scanner bed and applied tactile stimulation to the participant’s body. To ensure perfect timing of the tactile 

stimulation with respect to the video recording audio commands were played to the experimenter via MR-compatible 

headphones. 
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3.3 BEHAVIORAL MEASURES  

 

3.3.1 Subjective ratings of the illusion 

 

In Studies I and II we used questionnaires to quantify the subjective experience of 

the participants in the different experimental conditions. The participants were 

subjected to either synchronous (illusion) or asynchronous (control) visuo-tactile 

stimulation, and were then asked to complete a questionnaire on which they had to 

affirm or deny different perceptual effects on a seven-point Likert scale ranging from 

‘agree strongly’ (+3) to ‘disagree strongly’ (-3), with zero meaning ‘I am not sure’. 

Some statements were designed to capture the illusory experience of being the 

artificial body, and the remaining statements served as controls for suggestibility and 

task-compliance. The order of the statements was fully randomized for each 

participant. 

In Study III we also obtained subjective ratings of the illusory experience from 

the participants, which were then entered in a regression analysis aimed at revealing 

potential correlations between the strength of the illusion and the strength of neural 

activation in specific brain areas. In the first two experiments of this study we 

requested all subjects to remain in the scanner at the end of the scanning procedure 

for additional 5 minutes during which they were presented with each experimental 

condition again. At the end of each condition, four written statements were presented 

on the HMDs: two statements were designed to capture the experience of the illusion, 

whereas the other two statements served as controls. The participants were asked to 

verbally report the degree of their agreement with each statement, using a rating scale 

from 0 to 100. These values were then used to calculate an illusion index quantifying 

the subjectively experienced strength of the illusion for each participant.  

 

3.3.2 Threat-evoked electrodermal responses 

 

The electrodermal (i.e. skin conductance) response derives from the activity of the 

sweat glands which in turn are controlled by the sympathetic nervous system 

(Malmivuo and Plonsey 1995). In the cognitive and psychological sciences there is a 

long standing tradition of using the measurement of electrodermal activity as an 

indicator of psychological or physiological arousal in response to emotional stimuli. 

This technique has also been specifically used to provide physiological evidence of 

bodily illusions (Armel and Ramachandran 2003). In this context, it has been 

demonstrated that there is a direct relationship between the degree of anxiety evoked by 

threatening an artificial body part and the strength of illusory body ownership (Ehrsson 

et al 2007).   

In Studies I and II the skin conductance responses (SCR) were recorded in response 

to knife threats to the body of the mannequin (Table 1). In Study I we validated this 

test as an objective measure of the full-body illusion by comparing the evoked 

responses when the participants saw a knife or a spoon of a similar size to approach the 

body of the mannequin (Figure 8b,c). The knife and the spoon were always moved in a 

single ‘cutting’ motion along the horizontal axis from left to right in the field of view of 
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the HMDs. During the movement the object was inserted slightly into the mannequin’s 

abdomen in a small gap between the upper and lower parts of the mannequin’s body. 

To make this possible, we placed two circular sticky patches (0.5 cm high, 1 cm 

diameter) between the torso and the lower part of the body of the mannequin, thereby, 

creating a cleft in the lower part of the abdomen of the mannequin that was not visible 

from the perspective of the cameras (Figure 8a) . In the fourth experiment in Study I, 
the knife was run in full contact with the non-corporeal rectangular object, but we could 

not induce the visual effect of cutting into it because of its flat surface (Table 1). For 

this particular experiment we adjusted the way that the knife threat was applied to the 

mannequin so that the knife was moved along touching the dummy’s body, but without 

appearing to cut into it. The same threat motion was performed in the second and third 

experiments in Study II because those experiments contained conditions which 

involved seeing the mannequin from a third person visual perspective which prevented 

the use of a small gap between the upper and lower part of the mannequin’s body 

(Table 1). In all SCR experiments in the two studies we took great care to move the 

knife or the spoon in exactly the same way from trial to trial. The exact timing of the 

threat events was recorded by the experimenter via a key press, and then extracted from 

the raw data files prior to the analysis of the data. 

The SCR was identified as the peak in skin conductance occurring within a time 

window of 5 seconds following the onset of the threat stimuli (Figure 8d). The overall 

amplitude of the SCR for each threat event was measured as the difference between the 

minimal and maximal value of the response identified within this time window. We 

calculated the average of all responses including the trials where no response was 

apparent, thus, analyzing the magnitude of the SRC (Dawson et al 2007). Participants 

who did not show a reliable threat-evoked SCR (‘null responders’), i.e. had zero 

responses in more than two-thirds of the trials, were excluded from the analysis. 

Figure 8. a-c) Threat procedures. d) Example of evoked skin conductance responses.   



 

18 

In all experiments and studies the skin conductance measurements were performed 

with a Biopac System MP150 (Goleta, USA). Two Ag/AgCl type electrodes were 

attached to the index and middle fingers of the participants’ left hands using Signa 

electrode gel (Parker Laboratories, INC., New Jersey, USA). The data were registered 

with a Biopac System MP150 (100 samples per second) and processed with the Biopac 

software Acqknowledge for Windows ACK100W (Figure 8d). The participant wore the 

electrodes for a few minutes before starting the recording. 

 

 

3.4 FUNCTIONAL MAGNETIC RESONANCE IMAGING  

 

In Study III we used high field neuroimaging to investigate the neural activity 

associated with the experience of the full-body ownership illusion. Functional magnetic 

resonance imaging (fMRI) measures the changes in blood oxygenation that 

accompanies neural activity in the brain. Specifically, it detects the local increase in 

blood flow and the corresponding reduction in deoxygenated blood, by taking into 

account the net difference between the local blood supply and the magnitude of oxygen 

utilization (Buxton 2002). Oxygen is delivered to neurons by haemoglobin carried by 

the red blood cells in the capillaries. Haemoglobin is diamagnetic when oxygenated but 

paramagnetic when deoxygenated. Hence, depending on the degree of oxygenation the 

blood has different magnetic properties, which in turn leads to small differences in the 

MRI signal. Since blood oxygenation varies according to the levels of neural activity, 

these differences can be used to detect brain activity. This form of MRI is known as 

blood oxygenation level dependent (BOLD) imaging (Logothetis 2008; Ogawa et al 

1990). 

All three fMRI experiments of Study III were performed at the MR Center of the 

Radiology Unit at Karolinska Hospital, Huddinge.  

 

3.4.1 Experimental design  

 

In all three experiments we applied full factorial designs to address the specific 

questions of interest. In each experiment the condition epochs lasted 35 seconds. The 

conditions in experiments #1 and #2 were grouped into three blocks of four epochs, 

so that every condition was repeated three times within a scanning run. In experiment 

#3, the condition epochs were grouped in two blocks of six per scanning run. 

Between each condition within a block there was a short break lasting 3 seconds 

where the participants looked at a blank black screen and no touches were applied. 

After each block of four conditions (in experiments #1 and #2) or six conditions (in 

experiment #3), there was a 20 second baseline rest period, during which the 

participants were instructed to look at a black screen while no tactile stimuli were 

being administered. In experiments #1 and #2, each run consisted of 171 volumes and 

lasted for 513 seconds, and the three runs comprising the experiment were performed 

successively, with a break of approximately three minutes between each run. In 

experiment #3, each run comprised 163 volumes and lasted 489 seconds with a total 

of four runs with approximately three-minute long breaks between runs. 
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3.4.2 Acquisition and analysis of functional imaging data 

 

All BOLD-signal changes in cortical activity were acquired at 3T (TIM Trio, 

Siemens, Erlangen, Germany) with a T2*-sensitive echo planar imaging pulse 

sequence (repetition time 3000 ms; echo time 40 ms; flip angle 90°; 47 near-axial 

slices; 3-mm isotropic voxel size; matrix size 58 by 76). Images were acquired using 

a 12-channel phased-array head coil. A high-resolution T1-weighted structural scan at 

1 mm isotropic voxel size was also acquired in each subject for anatomical 

registration, segmentation and display. To minimize head motion, we stabilized the 

subject’s head with the help of foam padding. 

The fMRI data were analyzed with ‘Statistical Parametric Mapping Software 8’ 

(SPM8; http//:www.fil.ion.ucl.ac.uk/spm; Wellcome Department of Cognitive 

Neurology, London). The functional images were motion corrected, co-registered 

with the high-resolution structural scan, normalized to the MNI reference space and 

smoothed with an 8 mm FWHM Gaussian kernel. For each of the experimental 

conditions described above, we defined two regressors, modeling the first 10 and the 

subsequent 25 seconds of each stimulation period, respectively. The realignment 

parameters were included in the model as regressors of no interest, to account for 

residual head motion. Each condition was modeled as a boxcar function and 

convoluted with the standard SPM8 hemodynamic response function.  

To accommodate inter-subject variability, the contrast images from all subjects were 

entered into a random effect group analysis (second level analysis). In the factorial 

design, we only report peaks of activation surviving the statistical threshold of p < 0.05, 

corrected for multiple comparisons. For areas where we had a priori hypotheses, we 

used the significance level that corresponded to p < 0.05 corrected for multiple 

comparisons using a small volume correction. For the rest of the brain, where we did 

not have such a priori hypotheses, we used the topological peak-FDR as implemented 

in SPM8. 

In experiments #1 and #2, we used a second level regression model (as 

implemented in SPM8) to identify the brain regions in which the activity was related 

to the strength of the illusion as rated by the participants after the scans (using the 

illusion index described above). We defined a covariate corresponding to the illusion 

index for each participant and used the contrast images from the interaction term to 

search for areas in the whole brain showing a systematic relationship between illusion 

strength and the BOLD response. 

In experiment #3 we used multivoxel pattern alanlysis (MVPA) in addition to the 

general linear model to examine the encoding of generalized full-body ownership. In 

contrast to fMRI analyses that focus on individual brain voxels, MVPA utilizes 

pattern-classification algorithms to unveil the information embedded in a specific 

pattern of brain activity across multiple voxels. The advantage of MVPA with respect 

to traditional single voxel analyses, is that it represents a more sensitive analytical 

tool which detects more subtle changes in activity (Haynes and Rees 2005; Kamitani 

and Tong 2005). 

The functional images were pre-processed using SPM 8 in the same way as in the 

traditional univariate analyses described above (i.e. motion corrected, co-registered 
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with the high-resolution structural scan, normalized to the MNI reference space and 

smoothed with an 8 mm FWHM Gaussian kernel). Subsequent MVPA specific pre-

processing was performed with the Princeton Multi-Voxel Pattern Analysis Toolbox 

(www.pni.princeton.edu/mvpa).  

We delineated the region of interest for voxels carrying illusion-related 

information using locally-multivariate Monte Carlo brain mapping (Björnsdotter et al 

2011). A linear support vector machine (in the LIBSVM implementation; 

http://www.csie.ntu.edu.tw/wcjlin/libsvm/, with fixed regularization parameter C = 1) 

was used to model the conditions, and the proportion of correctly decoded trials (in an 

independent test dataset) was used to indicate the multivariate information content. 

The search volume size was set to 4mm. 
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4 RESULTS AND SHORT DISCUSSION 

 

4.1 STUDY I 

In this study we addressed the question of whether healthy individuals can be 

induced the illusory sensation of owning a new (artificial or real) body. In addition, we 

investigated the perceptual and cognitive mechanism underlying the process of 

attributing a body to oneself. By drawing inspiration from previous research on the 

rubber hand illusion (see introduction), we created a novel experimental set-up in 

which participants viewed a whole body from a first person perspective, while being 

subjected to synchronous visuo-tactile stimulation through stroking. We quantified the 

participants’ subjective experience of the illusion through questionnaires, and found 

that irrespectively of their gender about 70% of them affirmed the illusory sensation of 

perceiving the body of a male life-size mannequin as their own (Experiment 1, Table 

1). We then used threat-evoked skin conductance responses to demonstrate that this 

illusion of ownership is not confined to the specific area of sensory stimulation, but that 

it spreads encompassing the whole body (Experiment 3, Table 1). In addition, we found 

that the illusion breaks down when the tactile and visual inputs (coming from the 

participants’ and mannequin’s body respectively) are temporally incongruent 

(Experiment 1, 2, and 3), or when the body is replaced with a rectangular object that 

does not have humanoid shape (Experiment 4, Table 1).  

Remarkably, when we replaced the body of the mannequin with the body of another 

individual we found that naïve participants could perceive strong ownership of this 

other body even when they were interacting with their ‘old’ real bodies (Experiment 5, 

Table 1). This illusory effect was maintained as long as the convergent visual, motor 

and tactile inputs coming from the new body were matching those from the real body, 

even when the real body was in full view of the participants. Once again, the gender or 

the specific visual features of the new body did not affect the strength of the body 

ownership illusion.  

Taken together, these results demonstrate that it is possible to ‘move’ the human 

centre of awareness from one body to another. In addition, they suggest a set of 

perceptual rules that constrain the perceptual experience of body ownership and which 

correspond to the mechanisms of multisensory integration. 

 

4.2 STUDY II 

In the previous study we did not directly contrast the first person and third person 

visual perspectives, and therefore did not directly examine the role of the egocentric 

reference frame for the generation of the full-body illusion. In spatial cognition one 

differentiates between the first and the third person visual perspectives (Vogeley and 

Fink 2003), which in turn are related to the concept of ego- vs. allocentric reference 

frames (Burgess 2006; Klatzky 1998). An egocentric reference frame is a coordinate 

system centered on the body, and is considered to be important for functions related to 

perception and action performance (Fogassi et al 1992; Graziano and Gross 1998). In 

contrast, an allocentric reference frame corresponds to world coordinates centered on a 

reference point in extrapersonal space. This coordinate system is considered important 

for spatial cognitive functions such as determining one’s location with respect to 
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environmental landmarks, spatial navigation, and spatial memory (Burgess 2006; 

Maguire et al 1998).  

The concept of the two reference frames also relates closely to the distinction 

between multisensory neuronal populations which respond to stimuli that are either 

close or far from the body (Rizzolatti et al 1981). Hence, it has direct bearings on the 

process of multisensory integration in peripersonal space (see Introduction).  

The results from Study I, together with results from previous research on the rubber 

hand illusion (Makin et al 2008), led us to the hypothesis that the core of the process of 

attributing a body (part) to oneself is the mechanism of multisensory integration in 

peripersonal space. 

In Study II, we therefore directly tested the prediction that the multisensory 

processes giving rise to the full-body illusion operate in body-centered reference 

frames. To that end we compared two experimental conditions in which the tactile 

stimulation and the body of the mannequin could be perceived either from a first person 

perspective, i.e. in near-personal space (see Study I) or from a third person perspective, 

i.e. in a location opposite the participant in far extrapersonal space.  

Our results revealed that the perception of the full body ownership illusion is only 

possible when the converging visuo-tactile input triggering the illusion is perceived 

from a first person perspective in near personal space. Hence, our results provide strong 

behavioral evidence that the attribution of a body to oneself is directly linked to the 

mechanism of multisensory integration in body-centered coordinate system. 

In an additional experiment, we confirmed those results in a set-up in which the 

body of the mannequin was viewed with direct vision, hence demonstrating that the 

body ownership illusion is a genuine perceptual experience and cannot be explained 

simply by the use of head mounted displays and video technology.   

     

 

4.3 STUDY III 

In this study we investigated the neural underpinnings of the full-body ownership 

illusion reported in Studies I and II. In addition, we addressed the mechanism which 

underlies the spread of ownership from the site of stimulation to the rest of the body 

(see Study I) and allows the perceptual binding of owned body parts into a unified 

corporeal self. To that end we performed three independent fMRI experiments which 

addressed specific aspects of our hypotheses.  

In the first experiment we sought to identify the neural activations related to the 

perception of a body as belonging to oneself. When participants viewed the body of a 

life size mannequin from a first person perspective while being subjected to 

synchronous visuo-tactile stimulation, we found a significant increase in activity in the 

ventral portions of the bilateral premotor areas and the left anterior intraparietal sulcus 

compared to conditions in which the mannequin’s body was replaced by a wooden 

object of similar size or when the visuo-tactile stimulation was asynchronous.  

The significant activity in those multisensory areas is in line with results from 

previous neuroimgaing studies on limb ownership based on the rubber hand illusion 

(Ehrsson et al 2005; Ehrsson et al 2004) and provides compelling evidence that the self-

attribution of a body (part) is mediated via integration of visual, tactile, and 

proprioceptive information by neuronal populations in the ventral premotor and 

intraparietal cortices. 



 

  23 

Following the results of Study II (see above), we predicted that this body ownership 

related brain activity would be significant only when participants perceive the 

convergent visuo-tactile stimulation driving the experience from a first person, i.e. in 

near personal space. To test this hypothesis we conducted a second fMRI experiment in 

which a new group of naïve participants perceived the mannequin’s body either from 

the first person or the third person perspective. In strong agreement with our prediction 

we found significant activity in the left ventral premotor area and the left anterior 

intraparietal sulcus only when the body of the mannequin was perceived from the first 

person perspective in combination with congruent visuo-tactile input. It is important to 

note that in this condition we also observed activation in the left putamen which 

corresponded to a non-significant activity in this area observed in the first fMRI 

experiment. Studies both in humans (Gentile et al 2011) and in non-human primates 

(Graziano and Gross 1993) have identified the putamen as an area containing body-

centered multisensory neurons. 

Hence, both independent fMRI experiments provided converging evidence that the 

attribution of a body to oneself is related to neuronal computations in the ventral 

portion of the premotor area, the intraparietal sulcus and the putamen all of which 

integrate multisensory input in body-centered reference frames (Figure 9a-c). 

Moreover, the level of activity in the premotor area in both experiments was 

significantly correlated with the strength of the subjective full-body ownership 

experience as measured by the illusion index (see methods) suggesting a possible role 

of this area in the conscious perception of the body as part of the self (Figure 9d).  

 

Figure 9. Examples of activity in a) bilateral premotor cortex b) left intraparietal sulcus c) left putamen. d) 

Activity in the ventral premtor cortex was significantly correlated with the subjective strength of the experienced 

full-body ownership illusion as measured by the illusion index. Activation maps correspond to the interaction 

term in the factorial design in Study III (p set to 0.001 for display purpose), superimposed on a mean anatomical 

image.  
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In both experiments, however, the full-body ownership illusion was triggered by 

stimulation to the abdomen, i.e. a single body part. Hence, the mechanism underlying 

the spread of ownership so as to encompass the whole body as behaviorally observed in 

Study I remained unclear. Electrophysiological studies in non-human primates have 

shown that some multisensory neurons located in the premotor and intraparietal areas 

have visuosomatic receptive fields extending across several body segments (Duhamel 

et al 1998; Fogassi et al 1996; Graziano and Gandhi 2000; Rizzolatti et al 1981) 

sometimes even encompassing the entire body (Graziano and Gandhi 2000). 

To directly test the hypothesis that multisensory integration across body segments 

mediates the perceptual binding of owned body parts into a unified whole, we 

conducted a third fMRI experiment. We found that when participants experienced 

stimulation to an intact body that was perceived as a whole, as opposed to a single 

detached arm, there was a significant increase in activation in the left ventral premotor 

area, the left intraparietal sulcus and the left putamen. Furthermore, we found voxels in 

the ventral premotor and the anterior intraparietal areas which were active when the 

full-body ownership illusion was triggered by stimulation both on the hand and on the 

abdomen. A formal conjunction analysis revealed that only the voxels in the left ventral 

premotor area survived the statistical threshold for multiple comparisons. To exclude 

the possibility that this finding reflects mixed neuronal population in those voxels 

which have receptive fields restricted to individual body parts, we performed a 

multivoxel pattern analysis which is sensitive to fain-grained spatial patterns and 

subvoxel information (Haynes and Rees 2005; Kamitani and Tong 2005). We found 

that the same voxels in the ventral premotor area decode full-body ownership when it is 

triggered by congruent visuo-tactile stimulation to the hand and to the abdomen. 

Importantly, those voxels did not decode the illusion when the perceived visuo-tactile 

stimulation was coming from a single detached arm. Taken together, these results 

suggest that the ventral premotor area contains neuronal populations which mediate the 

spread of ownership to the whole body. 

Further research will be needed to understand the specific functional role of the 

different areas identified in our experiments with respect to the precise mechanism of 

the perceptual origin and experience of the corporeal self. 

 

 

4.4 UNPUBLISHED DATA (STUDY III)     

In the first two fMRI experiments in Study III we found consistent activity in the 

left lateral occipital cortex (LOC) when we performed a conjunction analysis of the 

main effects in the respective factorial designs (Figure 10). The coordinates of the peak 

activation in LOC were in a location that most likely corresponds to a sub-region of this 

cortex called the extrastriate body area (EBA), which is selectively activated by visual 

perception of bodies and body-parts (Downing et al 2001; Kontaris et al 2009; Peelen 

and Downing 2005, 2007). Our results suggest that this part of the visual cortex might 

contribute to the visual self-recognition of a body. The activity in this region was 

enhanced during the illusion, in particular when synchronous visuo-tactile stimulation 

was applied to the mannequin’s body, but only when it was observed from the first 

person perspective. This effect is most likely mediated via anatomical feed-back 

connections from posterior parietal areas involved in the basic mechanisms underlying 

the illusion (Lewis and Van Essen 2000). It is important to note that the consistent EBA 
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activity we observed the two experiments of our study, was restricted to the left EBA. 

In apparent contrast with this finding, a previous study found that the right EBA seems 

to selectively respond to images of the own body, as opposed to images of other 

individuals or scrambled body images (Vocks et al 2010). However, in this study the 

various body images were presented on a computer screen, that is the participants 

viewed them from a third-person perspective. 

Consistent with this, another study showed that the right EBA selectively responds 

to visual images of bodies presented from an ‘allocentric’ viewpoint (i.e. third person 

perspective) (Saxe et al 2006). The left EBA in contrast did not seem to distinguish 

between images viewed from a first or third person visual perspectives. What 

distinguishes our study from that of Saxe at al. (2006) though, is that our participants 

did not merely view a body from a first person perspective, but they were in fact 

experiencing ownership over that body. Hence, our study adds to our current 

understanding of the properties of the EBA, by showing that its activity can be 

specifically modulated by ownership sensations.     

 

Figure 10. Activity in the left lateral occipital cortex (extrastriate body area) in fMRI experiment #1 (panel above) 

and fMRI experiment #2 (panel below). Activation maps correspond to the conjunction analysis in the factorial 

designs (p value set to 0,001 for display purpose), superimposed on a mean anatomical image. The plots represent 

the contrast estimates (beta parameters of the general linear model) for the significant peaks of activation. 
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5   GENERAL DISCUSSION 

 

„Nature also teaches me by the sensations of pain, hunger, 

thirst, etc. that I am not only lodged in my body as a pilot in a 

vessel, but that I am very closely united to it, and so to speak so 

intermingled with it that I seem to compose with it one whole” 

Rene Descartes, Meditations VI 

 

 

 

5.1 MULTISENSORY INTEGRATION AND BODY OWNERSHIP 

The results of the three studies presented in this thesis provide converging evidence 

in support of the hypothesis that experiencing a body as belonging to oneself is 

primarily driven by multisensory integration. This neural mechanism relies on the 

properties of population of neurons called multisensory neurons, that integrate the input 

from multiple sensory modalities, i.e. vision, proprioception, and touch (Graziano and 

Gross 1994; Rizzolatti et al 1981) (see Introduction). The firing of multisensory 

neurons is in turn modulated by the spatial properties of their receptive fields. For 

instance, they fire not only when their tactile receptors are activated, but also when an 

object approaches their tactile receptive fields (typically within a distance of up to 30 

cm) (Graziano and Gross 1994; Rizzolatti et al 1997; Rizzolatti et al 1981). This space 

around the body in which this visuo-tactile integration occurs is referred to as 

peripersonal space. It is particularly pronounced around the hands and head, and has 

been proposed to be crucial for multisensory perception as well as goal directed 

reaching and defending behavior (Fogassi et al 1992; Graziano and Gross 1998). 

In the context of our behavioural studies employing a full-body illusion (Study I 

and II), we first showed how the perceptual ‘rules’ underlying full-body ownership are 

linked to the mechanism of multisensory integration. Specifically, we demonstrated that 

the sensation of full-body ownership arises only when (i) the visual, proprioceptive and 

tactile input coming from the body is spatially and temporally congruent, (ii) when the 

converging multimodal input is perceived from a first-person perspective, and (iii) 

when it occurs in peripersonal space. Moreover, we showed that all else remaining 

equal the sensation of ownership does not arise if the body from which the stimulation 

is perceived is replaced by a non-corporeal object (i.e. a wooden block of similar 

dimensions). Hence, multisensory integration mechanisms seem to specifically drive 

the experience of a corporeal self. 

By implementing the full-body illusion in a neuroimaging setting (Study III), we 

were then able to confirm our multisensory integration hypothesis at a neural level. 

That is, we showed that the sensation of body ownership is associated with a significant 

increase in activity in key multisensory brain areas which integrate visual, somatic and 

proprioceptive signals, i.e. the ventral portion of the premotor cortex, the anterior part 

of the intraparietal sulcus and the putamen (Avillac et al 2007; Avillac et al 2005; 

Bremmer et al 2001; Duhamel et al 1998; Fogassi et al 1996; Graziano and Gandhi 

2000; Graziano and Gross 1993; Graziano et al 1997; Rizzolatti et al 1981). 

Electrophysiological studies in non-human primates have shown that all these areas 

contain multisensory neurons, and that they receive anatomical projections from early 
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visual and somatosensory areas in the occipital and anterior parietal (Pandya and 

Kuypers 1969; Pearson and Powell 1985; Rizzolatti et al 1998; Vogt and Pandya 1978). 

Even more importantly with regard to our findings, recent neuroimaging studies have 

shown that the human premotor cortex, intraparietal areas, and putamen also perform 

integration of visual and somatosensory signals in peripersonal space, akin to that 

described in the macaque brain (Brozzoli et al 2011; Gentile et al 2011; Makin et al 

2007).  

Of particular interest were the results of the first two fMRI experiments of Study 
III, which both showed that the strength of the subjective experience of ownership of 

the mannequin’s body was significantly correlated with activity in the left ventral 

premotor cortex. In our third fMRI experiment we then explored the activation patterns 

of this area in even more detail with multivoxel pattern analysis. Intriguingly, we found 

that a specific sub-region was active regardless of the exact location of the multisensory 

input (i.e. the hand or the trunk), whereas other sub-regions selectively responded to the 

stimulation of individual body parts (i.e. only the hand or only the trunk). In other 

words, there seem to be some neural populations in the ventral premotor cortex with 

small receptive fields encompassing individual body segments, and others with larger 

receptive fields encompassing multiple body segments or possibly even the whole 

body. Although the spatial resolution of the BOLD signal does not enable one to draw 

any definite conclusions in regard to the receptive field size of individual neurons in 

humans, this interpretation is supported by electrophysiological studies in monkeys, 

which have in fact demonstrated the existence of multisensory neurons with such 

differential receptive field sizes (Fogassi et al 1996; Graziano 1999; Graziano et al 

1997; Rizzolatti et al 1981). It is the interplay of these neurons that can be hypothesized 

to underlie the unified perception of a whole body gestalt, which is more than a mere 

assembly of fragmented parts. A possible neurophysiological mechanism at play in this 

context could be mediated via horizontal connections between the different sub-regions 

of the ventral premotor cortex. Specifically, neuronal population with small and 

selective receptive fields could signal the exact location of the sensory input from the 

body, whereas activity of neurons with large receptive fields could signal the sensation 

that this location “belongs” to a unified whole body.  

Albeit speculative, these interpretations can be supported by the following results 

from the third experiment of our fMRI study: Firstly, when participants observed a 

detached arm that was not part of an intact body, the activity in both the ventral 

premotor cortex and the intraparietal suclus significantly decreased relative to the 

condition in which the participants viewed synchronized visuo-tactile stimulation on a 

whole intact body. Secondly, the activity of sub-regions of the ventral premotor cortex 

that was selectively driven by stimulation of the trunk, was modulated by stimulation of 

the hand only when the hand was perceived as belonging to a unified intact body. It is 

particularly interesting that the perception of a unified full-body gestalt seems to be 

associated with neural activity in the ventral portion of the premotor cortex, as 

activation of this area is also associated with consciously experiencing a body as 

belonging to oneself as indicated by the significant correlation of the activity in this 

region and the subjectively rated strength of the full-body illusion in experiments #1 

and #2 in Study III. However, further research is needed to pinpoint the respective roles 

played by the ventral premotor cortex, the intraparietal sulcus and the putamen (as well 

as the interplay between these regions) in the generation of full-body ownership 

sensations.  
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In sum, the studies of this thesis provide compelling evidence for the fact that 

multisensory integration, driven by neural activity in brain areas that integrate signals 

from different sensory modalities for the control of sensory-guided actions in body-

part-centered reference frames (Fogassi et al 1992; Graziano and Gross 1998), is the 

core mechanism underlying the perception of a corporeal self.  

 

 

5.2 IS THERE AN EXTENDED NEURAL NETWORK OF BODY 

OWNERSHIP?  

 

The results of Study III showed that the sensation of body ownership is associated 

with the activity of a cortical network involving multiple multisensory brain areas. 

Neural populations in these areas, however, code for other perceptual, cognitive and 

behavioral functions as well (Ehrsson et al 2000; Halsband and Freund 1990; Halsband 

and Passingham 1982; Kurata and Hoffman 1994; Mountcastle et al 1975; Murata et al 

2000; Pardo-Vazquez et al 2008, 2009; Passingham 1993; Romo et al 2004; Sakata et 

al 1992; Sakata et al 1995; Taira et al 1990; Weinrich et al 1984; Wise 1985). Hence, 

there does not appear to be a selective neural network solely devoted to the experience 

of a corporeal self as such, as it has been recently suggested (Blanke and Metzinger 

2009). Naturally, two important questions arise: First, is this fronto-parietal network the 

sole contributor for the conscious perception of the corporeal self? Second, exactly how 

does the activity within this distributed cortical network end up generating a conscious 

sensation of ‘belonging’ to a body? In section 7 of this thesis I will propose a personal, 

if speculative, attempt of answering the second question. 

An important clue for the answer to the first question comes from case studies of 

patients with somatoparaphrenia, a neurological condition that specifically affects what 

can be defined as ‘qualia’ (i.e. subjective conscious experience) of body ownership. 

The clinical picture of somatoparaphrenia is complex, as the condition has been found 

to be associated with lesions in a large variety of brain regions including subcortical 

structures and white matter tracts (see Introduction). Interestingly, a recent study 

pointed out how in most cases the white matter tract lesions seem to specifically affect 

the connections between the ventral premotor cortex and other brain regions (Zeller et 

al 2011). Thus, it seems likely that a distributed cortical network in which a central role 

is played by the ventral premotor cortex is crucial for the perception of the corporeal 

self, and that a disruption of this network leads to disturbed body ownership. 

Hence, it seems plausible to assume that the mechanism of multisensory integration, 

identified in the studies outlined above, plays a central role in a larger distributed 

network which jointly brings about the intimate sensation of the corporeal self. What 

could be the other constituents of this network? 

 

The first person visual perspective 

 

One important property that distinguishes the own body from all other objects is the 

unique and invariable visual perspective we have of it. Most objects in our environment 

can be observed from different angles and perspectives, but we can never see the back 

of our own body, the wrinkles around our eyes, or the whitening roots of our hair 

without the use of mirrors, photographs or video recordings of our bodily self.  Indeed, 
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the results of Study II outline the crucial role of the first person perspective for the 

attribution of a body to oneself. Apart from its importance in defining the egocentric 

reference frame in the mechanism of multisensory integration in peripersonal space, the 

first person perspective provides us with a unique visual image of our body, which is 

important in its own right. In fact, in Study III we found that viewing the body of the 

mannequin from a first person perspective in conjunction with congruent tactile 

stimulation, was associated with increased activity in the left extrastriate body area. 

This area is a higher order visual area located in the lateral occipital cortex, which is 

specialized in the visual perception and discrimination of bodies (Downing et al 2001; 

Kontaris et al 2009; Peelen and Downing 2007). Previous studies had already shown 

that the activity of the (EBA) can be modulated by the visual perspective of a seen body 

(Saxe et al 2006; Vocks et al 2010), but our findings further build on this notion by 

demonstrating that this region is modulated by the sensation of ownership of a body. 

Furthermore, since the EBA is anatomically connected with parietal and premotor areas 

(Lewis and Van Essen 2000), it is also likely to be one of the constituents of the 

distributed neural network generating the perceptual sensation of body ownership.     

 

The somatosensory input  

 

A further unique attribute of our own body is the fact that it is the only source of 

‘first hand’ sensory experiences. Our own body is the only one through which we can 

sense physical touch, pressure or pain. Interestingly however, in none of our 

neuroimaging experiments we observed any correlation between the strength of body 

ownership sensations and activation in primary somatosensory areas. One possible 

explanation could be that in all experimental conditions participants experienced the 

exact same sensory stimulation to their actual bodies, as well as constant congruent 

proprioceptive input. Hence, it is feasible to assume that the power of the interaction 

contrast between the different experimental conditions in our experiments was not 

sufficient to drive a significant modulation in the somatosensory system.  

Nevertheless, it is important to acknowledge that the sense of proprioception (which 

is also mediated by the somatosensory system) provides us with unique information 

about the posture and spatial configuration of our own body. Hence, it undoubtedly 

represents a crucial factor when it comes to attributing a body to ourselves. In fact, the 

utter importance of this sense has been outlined in a neurological case report of a 

patient suffering from complete loss of her sense of proprioception resulting in an 

unsettling sense of “disembodiment” [(Sacks 1998), p. 49]. Similarly, in a recent 

experimental study, it has been found that following anesthetic block healthy 

participants experienced illusory finger ownership based entirely on congruent visual 

and proprioceptive input (Walsh et al 2011). Thus, continuous afferent proprioceptive 

input is likely to be necessary for the perception of body ownership. However, the 

results in our study suggest that the conscious experience thereof does not necessary 

rely on modulations of activity in primary somatosensory cortices. Nevertheless, it is 

important to emphasize that the key multisensory brain areas which were active during 

the full-body ownership illusion integrate visual, tactile and proprioceptive input in 

body centered reference frames. As it will be discussed in greater detail below, 

however, activity modulations in primary and secondary somatosensory cortices have 

been proposed as a neural mechanism for self-other differentiation (Avikainen et al 

2002; Saxe et al 2006).     
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Agency 

 

An important characteristic of the own body is that its motor output generally 

corresponds to the intentioned motor behavior, i.e. sense of agency (Jeannerod 2003, 

2007), or to the sensory-motor predictions in case of voluntarily motor actions 

(Blakemore et al 1998; Wolpert et al 1995; Wolpert and Flanagan 2001). The complex 

interplay between the sense of agency and the perception of body ownership has been a 

subject of extensive experimental investigation (de Vignemont and Fourneret 2004; 

Kalckert and Ehrsson under review; Tsakiris et al 2010b; Tsakiris et al 2007b; van den 

Bos and Jeannerod 2002). It appears that the two phenomena are introspectively linked 

(Longo et al 2008), and that both contribute to cognitive self-recognition (van den Bos 

and Jeannerod 2002). However, they seem to be dissociable when their characteristics 

and effects are carefully compared in behavioral (Kalckert and Ehrsson under review) 

and neuroimaging (Tsakiris et al 2010b) experiments. Supportive evidence for the 

dissociation between the two phenomena comes from the Alien hand syndrome, in 

which the affected patients’ hand does not obey their will and instead appears to have a 

mind of its own (Assal et al 2007; Della et al 1994; Goldberg et al 1981). Despite the 

autonomous behavior of the affected hand, and the inability to control its movement, 

many patients nevertheless retain a sense of ownership over it (Marcel 2003). Thus, it 

seems that on both a behavioral as well as a neural level, the presence of a sense of 

agency is not essential for the experience of body ownership.  

In all but one of our experiments the full-body illusion was induced solely through 

visuo-tactile synchronization, with the participants remaining passive throughout the 

experimental procedure. Only in experiment #5 of Study I, in which the participants 

experienced illusory body swapping with the experimenter, the synchronous visuo-

tactile stimulation was a accompanied by concomitant synchronized motor behavior 

(i.e. hand clasping). Hence, from the results in our studies it is clear that full-body 

ownership can be elicited without voluntary action, i.e. purely by multisensory 

correlations, and that it can be maintained during voluntary action as long as the seen 

and felt movement are spatially and temporally congruent. In addition, and of particular 

interest, a large percentage of participants across all three studies spontaneously 

remarked that as they experienced illusory ownership over the artificial body, they were 

also expecting it to obey their potential intention to move. Therefore, it seems to be the 

case that experiencing ownership over a body is a prerequisite for experiencing agency 

over it, but that agency in itself is not enough to drive ownership sensations. 

 

Me and my body are spatially co-localized 

 

The sense of our own body is intimately linked to the perception that we are 

constant ‘inhabitants’ of it. That is, generally speaking our body and our centre of 

awareness are spatially co-localized. This union of the self and the body can however 

be interrupted in individuals who have spontaneous or evoked out of body experiences 

(Blackmore 1982; Blanke et al 2004; Blanke et al 2002; Brugger et al 2006; Devinsky 

et al 1989; Grusser and Landis 1991; Irwin 1985).  

Studies of epileptic patients involving electrophysiological stimulation during pre-

surgical localization of seizure onset, have shown that bilateral stimulation of the 

temporo-parietal junction (TPJ), and particularly the superior temporal gyrus, elicits 

vivid experiences of being outside one’s own body (Blanke et al 2004). In addition, as 
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mentioned in the introduction such out of body experiences can also be induced 

experimentally in healthy individuals with the use of video technology and concomitant 

manipulation of visuo-tactile input observed either from the first person visual 

perspective (Ehrsson 2007), or from the third person visual perspective (Lenggenhager 

et al 2007). A neuroimaging study  which used the experimental protocol developed by 

Lenggenhager et al (2007)  has found the experimentally induced dissociation between 

the localization of the self and the body to be associated with a bilateral change in 

activity in the TPJ, again most pronounced in the superior temporal gyrus (Ionta et al 

2011). Hence, it seems like the TPJ plays an important role when it comes to detect 

incongruencies between the localization of the self and the body, which is in line with 

its known role of detecting a range of contradicting or surprising sensory inputs 

(Astafiev et al 2006; Corbetta and Shulman 2002; Kincade et al 2005; Shulman et al 

2009). In fact, in the second fMRI experiment of Study III we observed a significant 

increase of activation within the left TPJ reflecting a main effect of asynchronous 

visuo-tactile stimulation, regardless of the visual perspective from which the body of 

the mannequin was perceived. In addition, we did not observe any significant increase 

in activation in this region in any of the conditions in which the participants perceived 

ownership of the mannequin’s body. It can be, thus, speculated that this region plays an 

indirect role in the perception of body ownership as it primarily signals salient 

incongruencies which need to be attended to (Corbetta and Shulman 2002). Therefore, 

it might not be surprising that epileptic or direct electrical stimulation in this region of 

the TPJ leads to the perceptual separation between the experienced center of awareness 

and the body, i.e. to an out of body experience.   

However, TPJ and specifically the superior temporal sulcus have been shown to play 

an important role also in social cognition and theory of mind (Dodell-Feder et al 2011; 

Frith and Frith 2006; Samson et al 2004). These and related concepts of the 

functionality of this region would be discussed in greater detail further below in the 

section of the discussion which deals with a possible wide distributed ‘self-other’ brain 

network and its potential role in the mechanisms giving rise to the qualia of the 

corporeal self.    

 

Additional possible components in the extended brain network contributing to the 

perception of body ownership  

 

In addition to purely sensory-motor information, there are other important cognitive 

and physiological aspects that can be assumed to significantly contribute to the 

sensation of bodily self. A detailed discussion of all these potential aspects goes beyond 

the scope of the current discussion, but I would nevertheless like to just briefly mention 

at least a few of them:  

a) Autobiographical (episodic) memory, which is linked to a self-memory system 

that provides information on what the self is, what the self was, and what the self can be 

(Conway 2005). This information is categorized into three broad areas: lifetime 

periods, general events, and event-specific knowledge (Conway and Pleydell-Pearce 

2000). In a nutshell, it is likely that the autobiographical memory system provides 

longitudinal information about the own body appearance, its sensory-motor 

characteristics and overall knowledge of its development. 

b) Interoception, which provides information on internal bodily states. According to 

Craig (2003) the primary function of the interoceptive system is to provide well-
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discriminable feelings from the body that include pain, temperature, itch, sensual touch, 

muscular and visceral sensations, vasomotor activity, hunger, thirst, and ‘air 

hunger’(Craig 2003). To quote the author: “…a metarepresentation of the primary 

interoceptive activity is engendered in the right anterior insula, which seems to provide 

the basis for the subjective image of the material self as a feeling (sentient) entity, that 

is, emotional awareness”. It is worth mentioning, that in a positron emission 

tomography study employing the RHI, activity in the right posterior insula has been 

observed in correlation with the perceived proprioceptive drift towards the rubber hand 

(Tsakiris et al 2007a). In addition, it has been shown that people with low interoceptive 

sensibility as measured with heartbeat monitoring task experience a strong perceptual 

illusion of ownership in the rubber hand illusion (Tsakiris et al 2011). While 

undoubtedly intriguing, further studies are needed to understand the exact implications 

of these findings.   

c) Attention, which is linked to the more general sense of self-awareness. The 

relationship between attention and awareness has been the focus of a wealth of past 

research studies (Dehaene et al 2006; Kentridge et al 2004; Koch and Tsuchiya 2007; 

Naccache et al 2002). Of most relevance in the current context is research on 

hemispatial neglect. This neurological condition occurs most commonly after a right 

hemisphere damage and is characterized by the loss of ability to process stimuli in the 

contralesional side of space including the own body (Brain 1941; Critchley 1953). 

Lesions both in temporo-parietal and frontal lobes have been reported in clinical 

populations with this syndrome (Karnath et al 2001; Ptak and Schnider 2010; Vallar 

and Perani 1986).  

 

 In sum, the conscious experience of body ownership appears to be driven by a 

distributed neural network, with particular emphasis on higher order multisensory areas 

that integrate visual, tactile and proprioceptive input in body-centered reference frames. 

Further experimental and clinical research will be essential to shed further light on the 

nature of the interconnections between the different constituents in this network, and 

their relation to different aspects of bodily self-consciousness and neurological 

disturbances thereof. Still open, in addition, is a question of more philosophical nature: 

How does the conscious perception of bodily ‘mineness’ (a term first coined by 

Heidegger in Being and Time, 1927, to denote the own being) arise? In other words, 

how does the activity within this wide spread brain network bring about the qualia of 

the bodily self? Further below in section 7 of this thesis I will address a series of 

aspects that need to be considered in this regard, and propose a personal, if speculative, 

attempt of answering this question. 

 

 

5.3 DO I NEED A BODY TO KNOW WHO I AM? 

 

The results of the studies presented in this thesis provide an affirmative answer to 

this question, as they show that we need converging sensory input from our body to 

construct our corporeal self. However, the current work opens up another intriguing 

question: Do I need my body to know who I am? Paradoxically, the answer to this 

second question seems to be ‘no’. What I am referring to here with the term ‘my’ is our 

actual body, the one that we experienced as ‘ours’ since our birth. As the results of 
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Study I and Study II clearly demonstrated, only a few seconds of congruent visuo-

tactile stimulation experienced from a first person perspective seem to be sufficient to 

induce healthy participants to experience the body of a mannequin or the body of 

another individual as their own, regardless of striking differences in gender, visual 

characteristics, or skin tone. In addition, the results of Study III showed that the visuo-

tactile stimulation leading to the perception of an artificial body as belonging to oneself 

results in activation in similar multisensory brain areas as the visuo-tactile stimulation 

of the own body (Brozzoli et al 2011; Gentile et al 2011). Based on these findings, we 

can conclude that the body image seems to be remarkably malleable, and that major 

changes in the visual appearance of our own body do not lead to a loss of self-identity. 

From an evolutionary perspective, this remarkable flexibility can be assumed to have 

developed in order to allow for a perpetually experienced integrity of an aging, growing 

and ever changing body appearance. 

 

 



 

34 

6 FUTURE DIRECTIONS 

 

Work in progress 

 

The studies conducted during the course of this work represent only an initial step 

towards the understanding of the neural underpinnings of the corporeal self. Current 

work in progress is devoted to more detailed investigations of the characteristics of the 

receptive fields of multisensory neurons in the three key regions (PMv, IPS, and 

putamen) that we have found to be associated with the full-body ownership illusion. 

Specifically, we aim to shed further light on the exact neural mechanisms underlying 

the perception of a whole unified body, as opposed to a mere collection of segmented 

body parts. For this purpose we are using multivoxel pattern analysis to test for shared 

neural coding of the full-body illusion when it is driven by congruent visuo-tactile 

stimulation of the hand, the trunk or the leg respectively. Preliminary results indicate 

that of the three regions mentioned above, only the left PMv seems to contain voxels 

that show nearly identical BOLD activity patterns for the three body parts. In addition 

to these ‘whole body’ multisensory voxels however, we also found voxels that seem to 

show somatotopic patterns of activity, i.e. that differentiate between the conditions in 

which the full-body illusion is driven by stimulation of different body parts. We found 

these voxels to be located in the anterior IPS and the putamen, and their multivoxel 

patterns of BOLD activity suggest that they code for the multisensory integration 

related to different body parts exclusively in a somatotopic way. These results confirm 

and build on the results of the third fMRI experiment of Study III. Further data analyses 

employing psychophysiological interactions (PPI) or dynamic causal modeling (DCM) 

will be invaluable to further unveil the complex nature of the interplay between 

different brain areas that underlies the experience of a corporeal self. 

 

Future lines of research 

 

Electrophysiological studies in humans employing electroencephalography (EEG) or 

magnetoencephalography (MEG) would represent an important tool for addressing the 

binding problem mentioned in the discussion, and could possibly reveal the temporal 

relationship and connectivity pathways between the different brain areas involved in 

body ownership.  

Electrophysiological studies in monkeys would also be invaluable for shedding 

further light on the neural interactions at play in the generation of body ownership, 

especially since they would allow simultaneous single cell recordings from multiple 

brain areas, measurement of local field potentials as well as multi unit recordings. An 

obvious challenge for such studies would be the adaptation of the full-body ownership 

illusion set-up for non-human primates, and in particular the reliable assessment of the 

potential illusory experience in monkeys. However, the successful development of such 

a set-up would represent a unique opportunity to study the causal relationships within 

the neural network underlying body ownership, as it would enable the selective 

deactivation of specific nodes of the network through precise brain lesions or 

optogenetics. 
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Lastly, pharmacological studies involving the rubber hand or full-body illusions 

could potentially elucidate the role played by individual neurotransmitter systems in the 

process of self-attribution of a body. 

   

Body swapping in clinic and industry 

 

The perceptual full-body ownership illusion provides a novel tool for a broad 

spectrum of clinical, scientific, and industrial applications. For example, the set-up 

developed in the course of this PhD research has been used to investigate the nature of 

telescoping of phantom limbs and associated phantom pain in amputees (Schmalzl and 

Ehrsson 2011; Schmalzl et al 2011). Currently in preparation is a series of research 

projects that will use this set-up for possible therapeutic applications in patients with 

eating disorders. In addition, the full-body ownership illusion has been replicated in 

virtual reality settings, showing that healthy participants can be induced to experience 

even the body of a computer generated avatar as their own (Slater et al 2009; Slater et 

al 2010). Further potential scientific, clinical and industrial applications range from 

social psychology (e.g. prejudice research) to clinical psychology (e.g. body 

dysmorphic disorder, gender identity disorder etc.), psychiatry (e.g. schizophrenia), 

neurology (e.g. neuropathic pain, somathoparaphrenia etc.), robotics, telepresence, 

virtual reality, and possibly even more. Exploring the full potential of the full-body 

ownership illusion and the full range of its applications as an experimental tool 

represents a possibly fruitful endeavor for a wealth of future studies to come.  
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7 NEW HYPOTHESIS OF BODILY ‘MINENESS’ 

 

 

7.1 THE ‘HARD PROBLEM’ OF BODILY ‘MINENESS’  

 

‘Why does the feeling which accompanies awareness of sensory information exist at 

all?’ and ‘Is consciousness reducible to its neural correlate?’ are two essential questions 

that comprise the ‘hard problem’ in the study of consciousness (Chalmers 1995, 1996). 

Several theoretical and experimental approaches have attempted to provide answers to 

these questions and pinpoint the neural correlates of consciousness.   

A common proposal of most theories of consciousness is that it relies on distributed 

representations in widespread fronto-parietal brain networks (Baars 1988; Baars 2002; 

Baars et al 2003; Dehaene et al 2006; Dehaene et al 1998; Dehaene and Naccache 

2001; Dehaene et al 2003; Gaillard et al 2009; Rees 2007). In addition, a subset of 

theories specifically focuses on the binding of information within these brain networks 

through oscillatory neural activity (Crick and Koch 1990; Engel and Singer 2001; 

Singer 2001). One other theoretical framework equates consciousness with integrated 

information, which is defined as the amount of information generated by a complex of 

elements that goes beyond the information generated by its parts (Tononi and Edelman 

1998a; Tononi and Edelman 1998b; Tononi and Laureys 2005). Another recent 

theoretical account further extended this notion, by postulating that consciousness is the 

result of self-directed social perception (Graziano and Kastner 2011).  

Can any of these theoretical models be applied to specifically address the qualia of 

the bodily ‘mineness’? As discussed above, the sensation of body ownership seems to 

arise from activity in a widespread cortical and subcortical network, with multisensory 

integration in fronto-parietal-subcortical regions playing a central role. This widespread 

cortical representation of the phenomenology of the corporeal self fits well with most 

of the theoretical models of consciousness, which in fact envision consciousness to also 

be the ‘product’ of wide spread information processing.  

The fact that the body is always there, however, makes the qualia of bodily 

‘mineness’ per se rather tonic than phasic in nature. Hence, it can be hypothesized that 

the conscious perception of the corporeal self is phenomenologically ‘weak’, i.e. not 

salient. At any given time, depending on specific contexts, we can become aware of 

distinct aspects of this experience, for example sensory sensations, motor output, 

proprio- or interoception, particular spatial, visual or cognitive information. Extensive 

further experimental research will be needed to reveal whether this process of bringing 

selective aspects of the bodily self into awareness is related to specific synchronized 

oscillatory activity in different sub-sets of the general widespread network, or whether 

it is more specifically linked to the mechanisms giving rise to social perception and 

cognition. Interestingly, one recent study involving electro encephalography reported 

that the experience of the rubber hand illusion is associated with inter-electrode 

synchrony in gamma band activity across the entire brain (Kanayama et al 2009). 

However, to date no other studies have confirmed these results in relation to body 

ownership.  

Investigating the mechanisms underlying the qualia of the bodily ‘mineness’ is 

intrinsically difficult, and it is nearly impossible to envisage an experimental condition 
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in which the experience of qualia as such could be ‘masked’ so it would not reach a 

level of conscious awareness. One such experimental condition would be the time 

window preceding the perceived onset of a body (part) ownership illusion. However, 

even this condition would have a serious limitation. Namely, even prior to experiencing 

the full-body or rubber hand illusions, participants have an implicit sense of ‘mineness’ 

of their actual body, which can’t be experimentally removed, and which can be 

assumed to be ‘transferred’ onto the new body. Nevertheless, the monitoring of the 

onset-time of illusory ownership of an artificial body or body part, and its relation to 

the subjective experience of qualia of bodily ‘mineness’, represents at least for now the 

most promising candidate for addressing this fundamental question. 

   

            

7.2 SELF VS OTHER IN THE BRAIN 

 

One remarkable property of the brain is its ability to code the motor behavior and 

intentions of other people. In a seminal study, (Di Pellegrino et al 1992) discovered the 

existence of so-called mirror neurons in the monkey brain, which fire both when a 

monkey executes a movement, and when it observes another monkey or a human being 

performing the same movement. Numerous fMRI studies conducted since then have 

suggested the existence of such mechanism also in the human brain, and demonstrated 

similar mirroring properties in broad spectrum of cognitive and sensory modalities 

(Blakemore et al 2005; Buccino et al 2001; Carr et al 2003; Gazzola et al 2006; 

Gazzola and Keysers 2009; Grafton et al 1996; Iacoboni et al 1999; Keysers et al 2004; 

Rizzolatti and Fabbri-Destro 2010; Singer et al 2004; Wicker et al 2003). Most of the 

early studies mainly focused on action recognition, motor learning and imitation  

(Gallese et al 1996; Rizzolatti et al 1996). Subsequently, the focus was also extended to 

the investigation of how the brain distinguishes mirrored from self-initiated actions 

(Agnew and Wise 2008; Avikainen et al 2002; Iacoboni et al 1999; Ishida et al 2010; 

Yoshida et al 2011). A proposed neural correlate of this differentiation is a modulation 

of the somatosensory cortices. For instance, Saxe et al (2006), found suppression of the 

BOLD signal in the primary somatosensory system, and concomitant enhanced activity 

in the right EBA, when participants observed body parts from a third person 

perspective. The authors suggested that the integration of such visual and 

somatosensory activity is informative for the discrimination between the self and the 

other. Contrary, another study found that hand actions and their observations were 

associated with enhanced activity in contralateral SI and a bilateral suppression of 

activity in SII, and concluded that a modulation of activity in these areas is likely to 

play role for self-other differentiation(Avikainen et al 2002). Furthermore, differential 

activity in the medial and lateral parietal operculum (SII) has been observed depending 

on whether the action was self generated or observed, suggesting that this area plays an 

important role in distinguishing executed from observed events (Agnew and Wise 

2008). However, contralateral somatotopically organized activity in primary and 

secondary somatosensory cortices, as well as activity in the premotor and parietal 

cortices and the superior temporal sulcus have been found when healthy participants 

observed videotaped touched delivered to the face and neck of another 

person(Blakemore et al 2005). While further research is needed to clarify the reason for 

the contrasting patterns of SI and SII activation found in these different studies, their 
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findings converge in underlining the importance of the somatosensory system when it 

comes to agent vs. observer discrimination. 

Further insights into the intricate mechanism of self-other discrimination come from 

electrophysiological studies in non-human primates. For example, a study revealed the 

existence of bimodal neurons in the ventral intraparietal area as well as the area 7b of 

the monkey brain, whose receptive fields are anchored on the monkey’s body but that 

also discharge in response to visual stimuli approaching corresponding parts of the 

experimenter’s body (Ishida et al 2010). Importantly, the visual receptive fields of these 

neurons covered an area of approximately 30 cm from the experimenter’s body surface, 

which corresponds to the spatial dimensions of peripersonal space (Graziano and Gross 

1994; Rizzolatti et al 1981). The authors suggested that these neurons might play an 

important role for the spatial matching between one’s own and someone else’s body, 

for action recognition and for imitation.  

Another interesting recent study found that a set of mirror neurons in the monkey’s 

ventral premotor cortex preferentially responded to observed action performed within 

the peripersonal space of the monkey, whereas another set of mirror neurons in the 

same area preferentially responded to observed actions performed in the monkey’s 

extrapersonal space (Caggiano et al 2009). In addition, while some of these spatially 

selective mirror neurons encoded space according to a metric representation, others 

seemed to encode it in operational terms, i.e. they modulated their firing rate depending 

on the monkey’s actual possibility to interact with the object. None of these neurons 

had somatic receptive fields, i.e. they were not multisensory in nature.  

One other recent elegant study has found the neural mechanisms of self-other 

differentiation to encompass areas in the medial frontal cortex as well (Yoshida et al 

2011). The results of this study provide compelling evidence for the existence of a large 

population of neurons in the dorsomedial convexity region (i.e. pre-supplementary 

motor area), which selectively respond to actions performed by a partner monkey, 

while being silent throughout the execution of identical self-generated actions. 

Moreover, about one third of these ‘partner-type’ neurons were selective for the 

position of the action target, whereas only a small percentage responded to visual 

features of this target (i.e. the color). Within the same area however, the authors also 

found self-type neurons which seem to selectively code self generated actions, as well 

as and non-differential neurons (i.e. mirror neurons) which respond to both performed 

and observed actions. These intriguing findings suggest that the medial frontal cortex 

plays an important role in coding higher order agent-related information.  

 

 

7.3 A NOVEL HYPOTHESIS OF ‘MINENESS TAGGING’ MECHANISM  

 

Given the variety of neurons in the ventral premotor, intraparietal and medial frontal 

cortices, as well as their differential multisensory, mirror and agent related properties, 

an interesting question arises: Could it be that instead of belonging to different neuronal 

systems, all these neurons are part of the same frontoparietal network which jointly 

codes the agent (self vs. other), the space of action (near vs. far), the behavioral 

relevance of the object location (reachable vs. non-reachable) and the type of behavior 

(executed vs. observed)? In other words, in theory it is possible to hypothesize that 

based on the pattern of activity of subsets of these populations of neurons, the brain is 
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able to extract the complex information necessary to code the self and other in a shared 

sensorimotor environment. For example, the sensation of ‘self-agent’ would be elicited 

through synchronized firing of populations of multisensory neurons in key 

multisensory areas with visual receptive fields restricted to the own body, and 

concomitant coupled firing of: a) canonical neurons in motor and premotor areas which 

code self-generated actions, b) sub-populations of mirror neurons which code for 

nearpersonal space and object reachability, and c) neurons in the medial frontal cortex 

which selectively code the self-agent of motor behavior). In addition, synchronized 

input from somatosensory, insular, and higher order visual (i.e. EBA) cortices, as well 

as activity within the memory and attention systems could further contribute to the self-

attribution of the action. Conversely, the sensing and understanding of ‘other-agent’ 

would be elicited through synchronized firing of sub-populations of multisensory 

neurons with visual receptive fields covering the corresponding parts of the other 

individual’s body, and concomitant coupled firing of: a) mirror neurons which 

selectively code the distance between the self and the other, and b) populations of 

‘partner-type’ neurons in the medial prefrontal cortex. And again, a potential 

modulation in somatosensory, insular, and higher order visual cortices could further 

strengthen the neural representation which specifically codes that the agent of the 

behavior is somebody else.  

In sum, differential activity of this widespread self-other discrimination system can 

be hypothesized to represent a sort of neural ‘tagging’ mechanism, responsible for 

classifying sensory-motor experiences as either related to the self (by labeling the 

qualia of it as ‘mineness’) or the other (by labeling the qualia of it as ‘otherness’). 

Specifically, what could be the case is that coupled activity (possibly in the gamma 

band) in neuronal populations across this shared self-other network selectively signals 

the self vs. the other with respect to ownership of bodily perceptions and actions.  

In addition however, it also can be hypothesized that a concomitant modulation of 

the neural activity within the TPJ, specifically the superior temporal sulcus, may play 

an additional important role within this ‘tagging’ system. In fact, lesions within the TPJ 

have been found to be associated with erroneous inference of other’s beliefs (Samson et 

al 2004), erroneous perception of self localization (Blanke et al 2004; Blanke et al 

2002), and failures in spatial attention (Friedrich et al 1998; Ptak and Schnider 2010). 

Moreover, functional imaging studies in humans have found TPJ activation to be 

associated with experimental paradigms involving perception of gaze direction and 

biological movement (Grossman et al 2000; Pelphrey et al 2005; Puce et al 1998), 

perception of others’ movement intentions (Blakemore et al 2003; Pelphrey et al 2004; 

Vander Wyk et al 2009), multisensory shifts in attention (Macaluso and Driver 2001; 

Macaluso and Frith 2002) as well as transition detection and sensory saliency (Downar 

et al 2000, 2002). Importantly, one recent study suggests that at least in the right TPJ 

there are distinct sub-regions involved in attention orientation tasks and Theory of mind 

tasks (Scholz et al 2009). Hence, it can be speculated that differential activity within the 

TPJ, or selective damage to specific sub-regions of it, can affect the correct labeling of 

beliefs, intentions or sensory-motor experiences with respect to their owner or agent.   
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7.4 HOW CAN THIS ‘TAGGING’ HYPOTHESIS BE TESTED? 

  

Ideally, testing of this novel hypothesis proposed above would involve an 

experimental setup that enables the selective impairment of the activity patterns across 

this global network, and the consequent monitoring of the resulting behavior and 

conscious experience. That is, according to this hypothesis lesions or abnormal activity 

in the patterns of activity that selectively code for the self (agent, perceiver) should lead 

to impaired sensations of agency, erroneous attribution of sensory-motor information to 

others (i.e. erroneous qualia of ‘otherness’), or a more general failure to experience 

body ownership and process higher order cognitive self-related information. 

Conversely, lesions or abnormal activity patterns affecting the neural representation of 

the other (agent, perceiver) could lead to erroneous self-attribution of others’ sensations 

or actions, or more general failures to process others’ actions, beliefs or intentions.  

In this respect, it is of particular importance to consider cases of neurological 

patients with specific disturbances of the ‘mineness’ vs. ‘otherness’ qualia. For 

example, Blakemore et al (2005) reported a case of a woman who, when observing 

another person being touched, experienced tactile stimulation on the equivalent parts of 

her own body. Importantly, the patient did not have any other neurological 

disturbances, nor did this ‘mirror-touch’ synesthesia occur when the patient observed 

objects being touched. Compared to healthy controls, her brain activation associated 

with the observation of videotaped tactile stimulation of another person’s face and 

neck, was characterized by a significant increase in activation in primary and secondary 

somatosensory cortices and the left ventral premotor cortex, as well as an additional 

activation in the anterior insula. In the context of the speculations outlined above, it can 

thus be hypothesized that abnormal patterns (i.e. increased levels) of neural activity in 

some of the key areas of the distributed self-vs.-other brain network (in particular the 

ventral premotor and somatosensory cortices as well as the interoceptive system), can 

lead to the erroneous ‘mineness’ experience of others’ tactile sensations. It would be of 

particular interest to perform whole brain multi-voxel pattern analysis to characterize 

the neural activity underlying mirror-touch synesthesia, with respect to that underlying 

the observation of tactile stimulation applied to external objects or one’s own body. 

Examples of erroneous ‘otherness’ labeling in clinical populations include cases of 

somatoparaphrenia and schizophrenia. As discussed above, the clinical picture of 

somatoparaphrenia is complex and variable, sometimes also involving white matter 

lesions. However, the disorder has most commonly been found to be associated with 

damage to cortical and subcortical regions including fronto-parietal areas, the insula, 

the basal ganglia, as well as fiber tracts to and from the ventral premotor cortex. Hence, 

it can be argued that even selective damage to parts of the widespread self-vs.-other 

brain network and the resulting disturbance in the global information processing and 

patterns of activity can lead to erroneous misattribution of own body parts to another 

individual, and to the consequent erroneous experience of ‘otherness’. In terms of 

patients with schizophrenia, it would be of particular interest to compare the neural 

activity associated with delusions of influence (i.e. movements of the own hand that are 

attributed to other agents), to that of other auditory or verbal hallucinations. A number 

of studies have already proposed a link between schizophrenia and disturbed 

functionality in the mirror neuron system (Arbib and Mundhenk 2005; Enticott et al 

2008; Iacoboni and Dapretto 2006). However, further research would be needed to 



 

  41 

determine whether delusions pertaining to the ‘domain’ of body ownership and agency 

attributions in particular, might be caused by specific malfunctions of the more general 

self-vs.-other ‘tagging’ network in the brain. 

       

 

7.5 CONCLUSION 

 

In sum, as suggested by the empirical data presented in this thesis, the sensation of 

owning a body seems to be coded by multisensory neurons in the ventral premotor 

cortex, the intraparietal area and the putamen. On the basis of our data as well as other 

relevant literature discussed above, I speculate that the conscious qualia of body 

‘mineness’ further relies on the activity of an extended brain network that supports self 

consciousness. In addition to the multisensory visuo-somatic areas, this network would 

also include the mirror neuron system, the EBA, the sensory-motor system, the insular 

cortex, the limbic system, as well as areas related to memory and attention in the 

medial frontal and parietal lobes. I further speculate that synchronized firing (possibly 

in the gamma band) of specific subpopulations of neurons belonging to this larger brain 

network could be a driving mechanism for the subjective qualia of ‘mineness’. In other 

words, according to this hypothesis bodily ‘mineness’ would arise when multisensory 

integration giving rise to the sensation of body ownership is accompanied by 

information processing in the extended brain network that supports self-agent 

perception and self-consciousness. Finally, I put forward the novel hypothesis of a self-

vs.-other ‘tagging’ brain mechanism, which relies on the activity of multisensory and 

mirroring systems, and which is responsible for self-other distinction and agency 

attribution. 
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